首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   47篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   9篇
  2015年   7篇
  2014年   13篇
  2013年   16篇
  2012年   10篇
  2011年   12篇
  2010年   3篇
  2009年   9篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
71.
Introduction of liposome-encapsulated SV40 DNA into cells   总被引:16,自引:0,他引:16  
DNA, isolated from Simian virus 40 (SV40), has been encapsulated in large (0.4-micrometer diameter) unilamellar phospholipid vesicles. The procedure used for liposome preparation encapsulated the SV40 DNA at high efficiency (30 to 50% entrapment) and did not alter the physical or biological properties of the DNA molecules. The biological activity of the liposome-entrapped viral DNA was determined by plaque assays on a permissive monkey cell line. The infectivity of liposome-entrapped SV40 DNA was enhanced at least 100-fold over that of free naked DNA. Importantly, the infectivity of vesicle-entrapped DNA was resistant to DNase digestion, dependent on the amount of DNA encapsulated per vesicle and on the vesicle lipid composition. Liposomes composed of phosphatidylserine were the most efficient for delivery of DNA to cells (1.8 x 10(3) plaque-forming units/micrograms of DNA). Following the incubation of DNA-containing liposomes with cells, their infectivity could be enhanced an additional 10- to 200-fold by exposing the cells to high concentrations of polyethylene glycol or glycerol. Under these conditions the infectivity of liposome-encapsulated SV40 DNA (3 x 10(5) plaque-forming units/microgram) was comparable with values reported using the calcium phosphate method. In addition to providing a sensitive assay for monitoring and optimizing the delivery of vesicle contents to cells, the liposome-mediated delivery of nucleic acids may have potential for increasing the efficiency of DNA delivery to cells and for extending the number of cell types which can be transformed or transfected.  相似文献   
72.
Previous work has shown that the firefly (Photinus pyralis) luciferase contains a C-terminal peroxisomal targeting signal consisting of the tripeptide Ser-Lys-Leu. This report describes the microinjection of two proteins, (i) luciferase and (ii) albumin conjugated to a peptide ending in the sequence Ser-Lys-Leu, into mammalian cells grown in tissue culture. Following microinjection, incubation of the cells at 37 degrees C resulted in peroxisomal transport of these exogenous proteins into catalase-containing vesicles. The translocation was both time and temperature dependent. The transport could be inhibited by coinjection of synthetic peptides bearing various peroxisomal targeting signal motifs. These proteins could be transported into peroxisomes in normal human fibroblast cell lines but not in cell lines derived from patients with Zellweger syndrome. These results demonstrate that microinjection of peroxisomal proteins yields an authentic in vivo system with which to study peroxisomal transport. Furthermore, these results reveal that the process of peroxisomal transport does not involve irreversible modification of the protein, that artificial hybrid substrates can be transported and used as tools to study peroxisomal transport, and that the defect in Zellweger syndrome is indeed the inability to transport proteins containing the Ser-Lys-Leu targeting signal into the peroxisomal lumen.  相似文献   
73.
74.
Trypanosomes compartmentalize most of their glycolytic enzymes in a peroxisome-like microbody, the glycosome. The specificity of glycosomal targeting was examined by expression of chloramphenicol acetyltransferase fusion proteins in trypanosomes and monkey cells. Compartmentalization was assessed by cell fractionation, differential detergent permeabilization, and immunofluorescence. The targeting signal of trypanosome phosphoglycerate kinase resides in the COOH-terminal hexapeptide, NRWSSL; a basic amino acid is not required. The minimal targeting signal is, as for mammalian cells, a COOH-terminal tripeptide related to -SKL. However, the acceptable degeneracy of the signal for glycosomal targeting in trypanosomes is considerably greater than that for peroxisomal targeting in mammals, with particularly relaxed requirements in the penultimate position.  相似文献   
75.
This report describes the microinjection of a purified peroxisomal protein, alcohol oxidase, from Pichia pastoris into mammalian tissue culture cells and the subsequent transport of this protein into vesicular structures. Transport was into membrane-enclosed vesicles as judged by digitonin-permeabilization experiments. The transport was time and temperature dependent. Vesicles containing alcohol oxidase could be detected as long as 6 d after injection. Coinjection of synthetic peptides containing a consensus carboxyterminal tripeptide peroxisomal targeting signal resulted in abolition of alcohol oxidase transport into vesicles in all cell lines examined. Double-label experiments indicated that, although some of the alcohol oxidase was transported into vesicles that contained other peroxisomal proteins, the bulk of the alcohol oxidase did not appear to be transported to preexisting peroxisomes. While the inhibition of transport of alcohol oxidase by peptides containing the peroxisomal targeting signal suggests a competition for some limiting component of the machinery involved in the sorting of proteins into peroxisomes, the organelles into which the majority of the protein is targeted appear to be unusual and distinct from endogenous peroxisomes by several criteria. Microinjected alcohol oxidase was transported into vesicles in normal fibroblasts and also in cell lines derived from patients with Zellweger syndrome, which are unable to transport proteins containing the ser-lys-leu-COOH peroxisomal targeting signal into peroxisomes (Walton et al., 1992). The implications of this result for the mechanism of peroxisomal protein transport are discussed.  相似文献   
76.
We have previously demonstrated that firefly luciferase can be imported into peroxisomes of both insect and mammalian cells. To determine whether the process of protein transport into the peroxisome is functionally similar in more widely divergent eukaryotes, the cDNA encoding firefly luciferase was expressed in both yeast and plant cells. Luciferase was translocated into peroxisomes in each type of organism. Experiments were also performed to determine whether a yeast peroxisomal protein could be transported to peroxisomes in mammalian cells. We observed that a C-terminal segment of the yeast (Candida boidinii) peroxisomal protein PMP20 could act as a peroxisomal targeting signal in mammalian cells. These results suggest that at least one mechanism of protein translocation into peroxisomes has been conserved throughout eukaryotic evolution.  相似文献   
77.
78.
The present study deals with the estimation of several missing values in F-square designs. The estimating equations for the non-iterative least squares estimation of Missing Values and explicit expressions for the estimators of the particular patterns of Missing Values are presented. This procedure is illustrated with the help of a numerical example.  相似文献   
79.
Lactate dehydrogenase (LDH) of the malaria parasite, Plasmodium vivax (Pv), serves as a drug target and immunodiagnostic marker. The LDH cDNA generated from total RNA of a clinical isolate of the parasite was cloned into pRSETA plasmid. Recombinant his-tagged PvLDH was over-expressed in E. coli Rosetta2DE3pLysS and purified using Ni2+-NTA resin giving a yield of 25–30 mg/litre bacterial culture. The recombinant protein was enzymatically active and its catalytic efficiency for pyruvate was 5.4 × 108 min?1 M?1, 14.5 fold higher than a low yield preparation reported earlier to obtain PvLDH crystal structure. The enzyme activity was inhibited by gossypol and sodium oxamate. The recombinant PvLDH was reactive in lateral flow immunochromatographic assays detecting pan- and vivax-specific LDH. The soluble recombinant PvLDH purified using heterologous expression system can facilitate the generation of vivax LDH-specific monoclonals and the screening of chemical compound libraries for PvLDH inhibitors.  相似文献   
80.
Scientists are interested in understanding the molecular origin of protein thermostability and thermoactivity for possible biotechnological applications. The enzymes from extremophilic organisms have been of particular interest in the last two decades. β-glycosidase, Tkβgly is a hyperthermophilic enzyme from Thermococcus kodakarensis KOD1. Tkβgly contains two conserved cysteine residues, C88 and C376. The protein tertiary structure obtained through homology modeling suggests that the C88 residue is located on the surface whereas C376 is inside the protein. To study the role of these cysteine residues, we substituted C88 and C376 with serine residues through site-directed mutagenesis. The wild-type and C376S protein existed in dimeric form and C88S in monomeric form, in an SDS-PAGE gel under non-reducing conditions. Optimal temperature experiments revealed that the wild-type was active at 100 °C whereas the C88S mutant exhibited optimal activity at 70 °C. The half-life of the enzyme at 70 °C was drastically reduced from 266 h to less than 1 h. Although C88 was not present in the active site region, the k cat/K m of C88S was reduced by 2-fold. Based on the structural model and biochemical properties, we propose that C88 is crucial in maintaining the thermostability and thermoactivity of the Tkβgly enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号